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Cluster-weighted modeling: Estimation of the Lyapunov spectrum in driven systems
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Cluster-weighted modeling based techniques are shown to be accurate, efficient, and robust in application to
the problem of computing the Lyapunov spectrum from time-series data. We develop a method that is appro-
priate for application to driven nonlinear dynamical systems and show, in particular, that it is possible to
estimate both global and local Lyapunov exponents through this technique. For dynamics on strange noncha-
otic attractors, the present approach correctly determines a largest Lyapunov exponent that is negative.
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[. INTRODUCTION Takens’ embedding theorem can be reformulated for applica-
) ] . ) ) tion to forced systeméwith minor restrictions on the nature
An ongoing theme in nonlinear science research since th@f the forcing [14], it has not been W|de|y utilized. As a
late 1970s has been the analysis of time-series data to extrasitactical matter, it is frequently unknown whether an autono-
information about the underlying dynamical syst¢in-4].  mous or nonautonomous process gives rise to the time-series
The ubiquity of nonlinearity, combined with the impossibil- data that are measured in an experiment. Indeed, many natu-
ity of monitoring all variables in any but the simplest experi- ral systems that merit study within this framework, such as
mental systems, has made this a subject of considerable inhe weather or the climate, or medical time series, are in fact
portance. Reconstruction of the phase-space dynamics frodriven dynamical systems.
monitoring a single dynamical variable can be carried out by The framework otluster-weighted modelingan be fruit-
techniqueg5] that are based on the Takens embedding thecofully applied to the analysis of time-series data from driven
rem [6]. Such reconstruction reveals underlying attractorsdynamical systems. Cluster-weighted mod&WVM's) are
and their characterization can be carried out through théupervised learning techniques which are based on the joint

computation of metric, dynamical, and topological quantitiesProbability density estimation of a set of input and output
that are invariant under coordinate transformations. Metridtargel data. They have been used in characterization of low-
invariants[7,8] such as fractal dimensions or multifractal dimensional dynamical systems such as the Lorenz attractor,

measures involve statistical convergence of the distributior‘?‘”d(;nfthe analy5|s| of f:lghly nginSIin?r%r time-series szatmon"
of points in phase space, while dynamical invariants like thgored from musical instrumentd.]. The superior predictive

: _properties of CWM's allow for accurate estimation of
Lyapunov exponentf9] are based on the evolution proper L yapunov exponents on both chaotic and nonchaotic attrac-

ties of the trajectories. Topological invariants are derivedtorS Furthermore, as a modeling strategy, CWM's offer dis-

from the stretching and foIdmg mec“""“‘?(“S present in th('ﬁnct advantages since all available information can be incor-
dynam|cs.. quether these (j_|ﬁerer)t quantities prowde rot.)us‘ﬁorated within local models which can be defined with as
characterization of low-dimensional chaotic dynamlcsmuch flexibility as desired

(10,11 There are other nonparametric predictive models that

In the present paper, we d‘?"e'o_p a different ap_proaqh Bave been developdd6,17 and have been successfully ap-
the computation of dynamical invariants. From a given time

. . .-plied in many cases. Although these have been shown to be
series, we construct local nonlinear models of the dynamm%

. . apable of predicting low-dimensional chaotic dynamics,
from which a global model can be synthesized. The local,qi. yility in the analysis of intermittent motion can be

models are probabjlistic and sjnce they make. no assumptioqﬁnited due to the occurrence of bursts with rare-event sta-
a%OUt the ut?derlé/lng ﬁly_naml;:al _s%/ste_m, tE'S method proygiics 18], Further, these methods are not ideally suited for
vides an unbiased technique for inferring phase-space proRsjication to forced systems, and in this respect, the present

erties. I CWM method should be viewed as a complementary tech-
One motivation for the present work comes from thenique
study of driven dynamical systems. Standard techniques for The necessity of accurate methods that are applicable for

dynamics reconst:juctzn[lZ]hhave dbeler_\ de(\jnsed for e_lut;)no- riven dynamical systems arises additionally from the fact
mhous systems an ﬂ.W 'en the underlying ynarrx::rs] IS (r)]rce hat with forcing, it is possible to have aperiodic but noncha-
these can give conflicting or erroneous resl®]. Although i pehavior. Studies of quasiperiodically forced nonlinear

systems have shown that there can be strange nonchaotic
attractors(SNA's) with negativelargest Lyapunov exponent
*Electronic address: ananda@theory.tifr.res.in [19]. However, the computation of the local Jacobian by es-
TPermanent address: School of Physical Sciences, Jawaharkimating the divergence of nearby trajectories in phase space
Nehru University, New Delhi 110 067, India. Electronic address:[12,2Q or in the tangent spad@1] has been shown to yield
rama@ias.edu incorrect Lyapunov exponents. Indeed, a recent study,
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wherein different time-series methods for estimating P;(A,k)dA =[probability thatA;(k) takes a value
Lyapunov exponents were compared, arrived at the conclu- betweenA and A +dA] )

sion that detection of nonchaotic dynamics from experimen-
tal time series is numerically impossill&3]. is, however, stationary.

The present CWM formalism, which overcomes this s crucial that an accurate representation of the Jacobian
shortcoming, is discussed in detail in Sec. lll. To set theye ghtained in order to get reliable Lyapunov exponents from

context, however, in the next section we briefly recapitulateexperimema| time-series data. For phase-space reconstruc-
the standard methodology for obtaining Lyapunov exponentgg, [5], the Takens method uses a scalar time seti®sand

from trajectories or from time series. Representative applicazo.reates vectors in édimensional Euclidean space as

tions are presented in Sec. IV, and the paper concludes with

a summary in Sec. V. x(n) ={s(n),s(n+T), ... s(n+(d-1T)} (9)

whereT is a suitably chosen time delay obtained from analy-
sis (say of the mutual informatiof23]) of the time series

The Lyapunov exponents of a dynamica| system are |m£21:| The standard algorithms to obtain Lyapunov exponents
portant in understanding stability properties. They can bdrom the reconstructed phase-space dynamics have been dis-
determined by observing the evolution of small deviations oftussed extensively in the literatur2,20. Here we intend
a fiducial orbit in phase spad€1]. When the dynamics is t0 construct accurate local models for the dynamics from
known, the formalism for extracting the spectrum of which the Jacobian can be obtained, and the methodology of
Lyapunov exponents is straightforward. Consider a discreté WM which achieves this objective is discussed in the fol-
dynamical system where the orhiin) € R?is determined by lowing section.
a mapping,

II. LYAPUNOV EXPONENTS

2(n+ 1) = f(z(n). 1) Ill. CLUSTER-WEIGHTED MODELING

Consider that the underlying dynamical system provides a
model M which outputs the time serigsgiven input data.
The essential idea underlying the CWM procedure is to ap-

The evolution of a perturbatiofdz(n) is governed by the
X n Jacobian matribDf(n),

sz(n+ 1) = Df 52(n) = DF(N) 8z(n) . 2 proximate this unknown model by a set of local nonlinear
(n+1) (2(m) dz(n) (n) 82(r) @ models denoted’,,k=1,2,... K. The global modelM is
In N steps, the deviation expands by the factor then constructed as a Gaussian mixture over a suitably cho-
sen sefC}.
Df"'=Df(N) Df(N-1)...Df(1) ©) Each local model’, is obtained via fitting a nonlinear

and the Lyapunov exponents are the logarithms of the eigerfunction, namely, by obtaining a set of parame{gsn suit-
values of the matrix ably chosen nonlinear maps

£ = lim[(DfNT(DfN) V2N, (4) y=f(x,80. (10
N—soo

For generality, the mapkare taken to be polynomial func-
In practice, the method of QR decompositi@?] gives su- tions. The joint probability distributiom(y,x) is expressed
perior numerical stability. The Jacobian at each time step igs a sum over the densities coming from each local model,
decomposed into an orthogonal matfXn) and an upper

triangular matrixR(n) as K K

Py, ) = 2 py.x,C) = 2 PyX,.Cp(XICIP(CY.-
Df(n+1) Q(nN)=Q(n+1) R(n+1) (5) k=1 k=1
(11)

N The probability of a given Local model is denotp’,),
.1 o with the usual normalizatiox,_,p(C)=1. Denote byP,
Ai —’\Ilmﬁn%ln Ri(m), i=1,...d, 6 and P, the covariance matrices for the input and output
- data, and byD, and D, the input and output dimensions. A
d being the dimension of the phase space. Finite-timaiseful choice for the input distributigp(x|Cy) is a Gaussian
Lyapunov exponents can be evaluated in an analogous magensity,
ner; thek-step exponent is

with Q(0)=1. The Lyapunov exponents are given by

P—l 1/2

L PG = (524 eni= (= Pk = 2

A =13 In Ry, ™ w
n=1

but unlike the asymptotic exponent, the finite-time Lyapunowvhere u, are the cluster means. Since the input and output
exponent depends on initial conditions. The correspondinglata are related via EL0), this gives an output distribution
probability density, of the form
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| P_’J[( 1/2

(27T)DY/2

xexp(~ [y~ f(x,801" - Pk - [y = f(x, B01}/2.
(13

p(y[x,Cy) =
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IV. APPLICATIONS AND RESULTS

We apply the CWM methodology to compute the
Lyapunov spectra for several model systems both for pur-
poses of validation as well as to demonstrate the suitability
of this technique for examining signals that originate from

The posterior probability, which can be computed throughdriven dynamics.

Egs.(11), (12), and(13) as

p(y,x[Ci)p(Cy)
K

p(Cly.x) = , (14)

> ply,x|c)p(c)

=1

is maximized with respect to model parametggswvhich can
be recursively estimated by an iterative search procedure, tf}
expectation-maximization algorithfi24]. New cluster prob-

abilities are estimated from the posterior probability in the

usual manner, by
N

1
P(C = 1 2 PClyn X, (15)
n=1
while the cluster means are updated as
N
E an(ck|ynyxn)
n=1
T (16)
2 p(ck|ynvxn)
n=1

Consider, for simplicity, a discrete driven one-
dimensional mapping of the general form
¢n+l = F(¢n,h(n)), (23)
where the forcing is effected through the functlaim) which
has dependence on the time indexin a standard manner,
by increasing the phase-space dimension this can be rewrit-
n as an autonomous skew product of the form

¢n+1 = f(¢na en) ’ (24)

Orne1=9(60), (25
where the latter equation depends on the nature of the forc-
ing. The dynamics of the system is thus characterized by the
mapsf,g, while the measurements give the observed quan-
tity s(n)=s(¢y).

As an example here we consider the case

f0,=Nw+ 6, mod 1, (26)

namely,g(6,) =6,+» mod 1. Whené, appears as the argu-

and hence the input covariance matrix elements are estinent of the forcing function, this can be either periodic or

mated as

Pkl )) = (X = i) - (Xj = 7)) (17)

The optimal model parametep can be determined by the

stationarity condition,

N

Eiln p(YnX,) =0, k=1,2,...K. (18)
n=1 9B
Thus all the model parameters may be evaluated from
Bk=B* Cy (19)
where
By(i,j) = (fi(x, 8 - ;(X, 8}, (20)
Cili,j) =({fi(x, 89 - y;)- (21)

Finally, the corresponding output covariance mafjx as-

quasiperiodic in time according asis a rational or irrational
number. In the latter case, the dynamics can be on SNAs
[19,25. As indicated earlier, existing methods of Welf al.

[12], Kantz[20], and Brownet al. [21] which approximate

the Jacobian in Eq(3) as a local neighborhood map and
calculate local divergence have been demonstrated to esti-
mate incorrect Lyapunov exponents for driven systéh®.

The procedure for dynamics reconstruction from a
measured times series using the present methodology is as
follows.

(1) The CWM algorithm considerg(n) and y(n)=x(n
+1) for n=1,...,1000 as the input and output data sets.
Each local model Eq.10) is chosen to be a quadratic func-
tion in Xx.

(2) The input distribution and output distribution are
evaluated via Eqs(12) and (13) and hence the posterior
probability is obtained from Eq.14).

(3) The log-likelihood of the data is maximized and the
converged parameter valugg are estimated by Eq19) as

sociated with each cluster is evaluated from the estimategegcriped.

values of the model parameters as

Pyi={y —f(x,801 Iy = f(x, 8J1"). (22

(4) Since the functional form of the fitting function is
known, the Jacobiabf is readily estimated. A proper choice
of the number of clusters required depends on the eigenval-

The set of parameters is recursively estimated until theyies of the local covariance matricBg, and P, [15]. We
converge to stationary values, and from the local models, theave found typically thaK=2 suffices for prediction and
global modelM is constructed. Any desired quantity such asconsidering a larger number of clusters does not significantly
the Lyapunov exponents, correlation functions, or fractal diimprove results.

mension can be computed directly from the global model.

(5) Lyapunov exponents are evaluated from ).
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parameters, the dynamics can be on chaotic-nonchaotic and
strange-simple attractors. The choice of quasiperiodic forc-
ing is of the form as in Eq(26). If f:M X R— M is the time
evolution of a system i in an m-dimensional manifoldv,
Py | | the Takens delay embedding m& M —RY is given by
S(p)=(s(p),s(f($)), ...,s(f"(¢))) and requires thatd
- - =2m+1. In our case of forced systems the dynamics is on an
M X N manifold where the forcing e N, an n-dimensional
i . manifold [14].
ST “0.68 0.7 ' 0.72 We take S:MXN—RY as the embedding, namely,
R ' ' ' ' ' T S(¢,0)=(s(¢,0),8(f(¢,0), ... s(f,0)) for d=2(m
- ® T +n)+1. This is, however, not generic for all and g. In
K ] addition, periodic forcing of short period needs to be ex-
s . cluded. This is a technical patholofi/4] which can be over-
PQA) | - come for quasiperiodic forcing at the expense of having to
use higher embedding dimensions.
Table | gives the converged Lyapunov exponents com-
puted from the time-series data, i.é\} for i=1,... d the
LA number of embedding dimensions of the reconstructed phase
space. Increasing the embedding dimension does not signifi-
cantly alter the estimated Lyapunov exponents. Spurious ex-
FIG. 1. Characteristic probability distribution of finite-time PONents are also estimated by this method as being approxi-

Lyapunov exponents fofa) fully developed chao$a=4) and (b) mat_ely zero: this is a result of the forced dynamical system
type-I intermittency(a=8+1-109) in the logistic map. The dis- having the skew-product structure. We have already shown

tributions are fork=10, and are obtained from2samples. that our cluster-weighted modeling based algorithm has the
capability of reproducing the probability distribution of
finite-time exponents. This is true for the SNA dynamics as
) o ) well, the corresponding probability distribution being asym-

Consider the logistic mabn.1=agn(1-¢n), for which  metric with distinct domination of contracting dynamics
the Lyapunov exponent at=4 is A=In 2 (the subscript is [27]: see Fig. 2. This effect is more prominent for smaller
dropped to simplify notation since there is only one expo-inite-time lengths when it results in longer tails in the dis-
nenf. Taking the input signak(n) as ¢, one obtains the tripution. The error margins reported in Table | are the stan-
embedded data(n) in a d-dimensional reconstructed phase dard deviations of the estimated Lyapunov exponents ob-
space via Eq(9) for the choice of delay tim&=1. To obtain  tained by repeating the analysis for different initial
robust estimates, the above algorithm is applied successivelionditions, namely,
to data segments until the estimated Lyapunov exponents
show convergence with iterations. We find~ A™=0.6931, )
in good agreement with the exact value; further, increasing o= m__12 (A= (A)*%, (27
the embedding dimension does not change this value. k=l

The power of cluster-weighted modeling is further shownwherem is the number ofMonte Carlg trials. The distribu-
in its ability to accurately predict local dynamics, and from tion of the A, is approximately normal, with mea )= A'.
this to estimate the finite-time Lyapunov exponent distribu-
tion. It is known that this quantity has a characteristic depen-
dence on the nature of the dynami@6]. Shown in Fig. 1 is
the probability density for the finite-time Lyapunov expo- We have also studied the effects of noise in the estimation
nentsP(A ,k=10), computed from time series from the lo- of Lyapunov exponents. This is a problem of considerable
gistic map for fully developed chads=4), and intermittent practical importance since any experimental signal is usually
chaos (a=1+y8-10°). In both these cases, the presentporrupted by no!se. T_he usual effect of gddit_ive noisg is to
technique correctly obtains the density, giving a cusp arounélcréase unpredictability, and therefore give higher estimates
At~0.693 in the former case, Fig(d, and an asymmetric for the Lyapunov exponefs). For dynamics that is chaotic,
fat-tailed distribution in the lattef18,26, Fig. 1(b). The fi-  this introduces systematic errors, but when the dynamics is
delity with which the local dynamics can be reconstructed ig'onchaotic(as on a SNA additive noise can destroy the
a crucial feature that contributes to the success of CWM ifionchaotic attractor. Here we add white noise to the time
estimating Lyapunov exponents for forced systems. series of the forced Henon map as

bn— &n*+ Ry, (28)

where R is the noise strength and thg, are i.i.d. random
The quasiperiodically forced logistic map and the forcedvariables in the intervdl-1,1]. The CWM technique is tol-
Hénon map are discrete driven systems where, depending @mant to low noise intensities; shown in Fig. 3 are the esti-

(a)

0.01 L
-0.1

A. The logistic map

m

C. Additive noise

B. Quasiperiodic forcing
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TABLE I. Lyapunov exponents estimated from time se(i&$§ for systems without and with forcing, and
on chaotic attractors or SNAs. The largest Lyapunov exponent, derdfeds obtained from the dynamics.

In each case, a total of 20 Monte Carlo trials was used to estimate the error bars.

System Model Parameters AM Al
Logistic map Pni1=apn(1—¢hp) a=4.0 (chaotig 0.6931  0.6929+0.0049
Forced bni1=adp(1—p) + € sin(2m0,) a=0.155¢=3.04 0.0161  0.0169+0.0040
logistic map Ons1= 0+ o(mod 1) (chaotig 0.0000+0.0008
—-0.0002+0.0004
a=0.151¢=3.01 -0.0210 0.0001+0.0004
(SNA) 0.0000+0.0004
-0.0212+0.0849
Forced ne1=1-Bd>+ Y+ a sin2md)  «=0.2,y=0.1,8=1.0 0.0846  0.0849+0.0062
Hénon map Une1=YPn (chaotig 0.0000+0.0008
On+1= Ot w(mod 1) 0.0000+0.0004
-2.3867+0.0715
a=0.2,9y=0.1,4=0.885 -0.0377 0.0000+0.0004

(SNA)

0.0000+0.0008

—-0.0376+0.0053
—2.2645+0.0093

mated values of the three leading Lyapunov exponents as layapunov exponents from scalar time series monitored from

function of the noise strength, lggR. For higher noise in- a variety of driven nonlinear dynamical systems.

tensity, the spurious exponeng&hich should be zenoare Our method relies on the Takens embedding theorem, and

inaccurately estimated, leading to an incorrect identificatiorconstructs local nonlinear maps to model the dynamics in the

of the dynamics. reconstructed phase space. This makes the computation of
the Jacobian both efficient and accurate. Embedding the
time-series data in higher dimensions introduces spurious ex-

V. CONCLUSION ponents but CWM is successful in restricting them to near

Cluster-weighted modeling is an efficient methodology I ' ! ' ! ' I
for the reconstruction of complex nonlinear dynamics. We 0 g -
have shown here that this method offers the possibility of S
accurately estimating dynamical features such as the i = ]

0.1 T T : . o —
i — k=200] ]| i 7
- — k=100| T A ]
i i 0.02 -
Py | | i _
L ) 0.04 - _
0.01 L L I -0.06 1 | 1 1 L |
0.1 -0.05 0 -3 2.5 2 -1.5
Al log,,(R)

FIG. 2. Characteristic probability distribution of finite-time FIG. 3. The effect of external noide on the leading Lyapunov
Lyapunov exponents for the quasiperiodically forced logistic mapexponents for the quasiperiodically forced Hénon map showing
showing SNA dynamics. The parameters are0.151,6=3.01, and SNA dynamics. BeyondR~ 0.003, accurate estimation of the
the distribution is obtained from'2 samples. Lyapunov exponents becomes numerically difficult.
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zero values. Of particular importance is the fact that finite-dynamics, particularly in an experimental setting.

time Lyapunov exponent distributions can also be estimated We also believe that the CWM methodology can be ex-
with considerable accuracy. Finally the present algorithnmtended to develop control and synchronization strategies for
shows sufficient robustness to noisy data which makes itow-dimensional dynamical systems, and work in that direc-
suitable to be used in most practical situations. tion is currently in progress.

Although strange nonchaotic dynamics have been sug-
gested as underlying stable and aperiodic natural phenomena
[28,29, it has hitherto proven difficult to conclusively estab-
lish this from time-series analysis alone. The present meth- This work was supported by a grant from the Department
ods can prove to be of considerable value in studying sucbf Science and Technology, India.
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