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Cluster-weighted modeling based techniques are shown to be accurate, efficient, and robust in application to
the problem of computing the Lyapunov spectrum from time-series data. We develop a method that is appro-
priate for application to driven nonlinear dynamical systems and show, in particular, that it is possible to
estimate both global and local Lyapunov exponents through this technique. For dynamics on strange noncha-
otic attractors, the present approach correctly determines a largest Lyapunov exponent that is negative.
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I. INTRODUCTION

An ongoing theme in nonlinear science research since the
late 1970s has been the analysis of time-series data to extract
information about the underlying dynamical systemf1–4g.
The ubiquity of nonlinearity, combined with the impossibil-
ity of monitoring all variables in any but the simplest experi-
mental systems, has made this a subject of considerable im-
portance. Reconstruction of the phase-space dynamics from
monitoring a single dynamical variable can be carried out by
techniquesf5g that are based on the Takens embedding theo-
rem f6g. Such reconstruction reveals underlying attractors,
and their characterization can be carried out through the
computation of metric, dynamical, and topological quantities
that are invariant under coordinate transformations. Metric
invariants f7,8g such as fractal dimensions or multifractal
measures involve statistical convergence of the distribution
of points in phase space, while dynamical invariants like the
Lyapunov exponentsf9g are based on the evolution proper-
ties of the trajectories. Topological invariants are derived
from the stretching and folding mechanisms present in the
dynamics. Together these different quantities provide robust
characterization of low-dimensional chaotic dynamics
f10,11g.

In the present paper, we develop a different approach to
the computation of dynamical invariants. From a given time
series, we construct local nonlinear models of the dynamics
from which a global model can be synthesized. The local
models are probabilistic and since they make no assumptions
about the underlying dynamical system, this method pro-
vides an unbiased technique for inferring phase-space prop-
erties.

One motivation for the present work comes from the
study of driven dynamical systems. Standard techniques for
dynamics reconstructionf12g have been devised for autono-
mous systems and when the underlying dynamics is forced,
these can give conflicting or erroneous resultsf13g. Although

Takens’ embedding theorem can be reformulated for applica-
tion to forced systemsswith minor restrictions on the nature
of the forcingd f14g, it has not been widely utilized. As a
practical matter, it is frequently unknown whether an autono-
mous or nonautonomous process gives rise to the time-series
data that are measured in an experiment. Indeed, many natu-
ral systems that merit study within this framework, such as
the weather or the climate, or medical time series, are in fact
driven dynamical systems.

The framework ofcluster-weighted modelingcan be fruit-
fully applied to the analysis of time-series data from driven
dynamical systems. Cluster-weighted modelssCWM’sd are
supervised learning techniques which are based on the joint
probability density estimation of a set of input and output
stargetd data. They have been used in characterization of low-
dimensional dynamical systems such as the Lorenz attractor,
and in the analysis of highly nonlinear time-series data moni-
tored from musical instrumentsf15g. The superior predictive
properties of CWM’s allow for accurate estimation of
Lyapunov exponents on both chaotic and nonchaotic attrac-
tors. Furthermore, as a modeling strategy, CWM’s offer dis-
tinct advantages since all available information can be incor-
porated within local models which can be defined with as
much flexibility as desired.

There are other nonparametric predictive models that
have been developedf16,17g and have been successfully ap-
plied in many cases. Although these have been shown to be
capable of predicting low-dimensional chaotic dynamics,
their utility in the analysis of intermittent motion can be
limited due to the occurrence of bursts with rare-event sta-
tistics f18g. Further, these methods are not ideally suited for
application to forced systems, and in this respect, the present
CWM method should be viewed as a complementary tech-
nique.

The necessity of accurate methods that are applicable for
driven dynamical systems arises additionally from the fact
that with forcing, it is possible to have aperiodic but noncha-
otic behavior. Studies of quasiperiodically forced nonlinear
systems have shown that there can be strange nonchaotic
attractorssSNA’sd with negativelargest Lyapunov exponent
f19g. However, the computation of the local Jacobian by es-
timating the divergence of nearby trajectories in phase space
f12,20g or in the tangent spacef21g has been shown to yield
incorrect Lyapunov exponents. Indeed, a recent study,
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wherein different time-series methods for estimating
Lyapunov exponents were compared, arrived at the conclu-
sion that detection of nonchaotic dynamics from experimen-
tal time series is numerically impossiblef13g.

The present CWM formalism, which overcomes this
shortcoming, is discussed in detail in Sec. III. To set the
context, however, in the next section we briefly recapitulate
the standard methodology for obtaining Lyapunov exponents
from trajectories or from time series. Representative applica-
tions are presented in Sec. IV, and the paper concludes with
a summary in Sec. V.

II. LYAPUNOV EXPONENTS

The Lyapunov exponents of a dynamical system are im-
portant in understanding stability properties. They can be
determined by observing the evolution of small deviations of
a fiducial orbit in phase spacef21g. When the dynamics is
known, the formalism for extracting the spectrum of
Lyapunov exponents is straightforward. Consider a discrete
dynamical system where the orbitzsndPRd is determined by
a mapping,

zsn + 1d = f„zsnd…. s1d

The evolution of a perturbationdzsnd is governed by then
3n Jacobian matrixDfsnd,

dzsn + 1d = Df„zsnd…dzsnd ; Dfsnddzsnd. s2d

In N steps, the deviation expands by the factor

DfN = DfsNd DfsN − 1d . . .Dfs1d s3d

and the Lyapunov exponents are the logarithms of the eigen-
values of the matrix

L = lim
N→`

fsDfNd†sDfNdg1/2N. s4d

In practice, the method of QR decompositionf22g gives su-
perior numerical stability. The Jacobian at each time step is
decomposed into an orthogonal matrixQsnd and an upper
triangular matrixRsnd as

Dfsn + 1d Qsnd = Qsn + 1d Rsn + 1d s5d

with Qs0d= I. The Lyapunov exponents are given by

Li = lim
N→`

1

No
n=1

N

ln Riisnd, i = 1, . . . ,d, s6d

d being the dimension of the phase space. Finite-time
Lyapunov exponents can be evaluated in an analogous man-
ner; thek-step exponent is

Liskd =
1

k
o
n=1

k

ln Riisnd, s7d

but unlike the asymptotic exponent, the finite-time Lyapunov
exponent depends on initial conditions. The corresponding
probability density,

PisL,kddL = fprobability thatLiskd takes a value

betweenL andL + dLg s8d

is, however, stationary.
It is crucial that an accurate representation of the Jacobian

be obtained in order to get reliable Lyapunov exponents from
experimental time-series data. For phase-space reconstruc-
tion f5g, the Takens method uses a scalar time seriesssnd and
recreates vectors in ad-dimensional Euclidean space as

xsnd = hssnd,ssn + Td, . . . ,s„n + sd − 1dT…j s9d

whereT is a suitably chosen time delay obtained from analy-
sis ssay of the mutual informationf23gd of the time series
f21g. The standard algorithms to obtain Lyapunov exponents
from the reconstructed phase-space dynamics have been dis-
cussed extensively in the literaturef12,20g. Here we intend
to construct accurate local models for the dynamics from
which the Jacobian can be obtained, and the methodology of
CWM which achieves this objective is discussed in the fol-
lowing section.

III. CLUSTER-WEIGHTED MODELING

Consider that the underlying dynamical system provides a
modelM which outputs the time seriesy given input datax.
The essential idea underlying the CWM procedure is to ap-
proximate this unknown model by a set of local nonlinear
models denotedCk,k=1,2, . . . ,K. The global modelM is
then constructed as a Gaussian mixture over a suitably cho-
sen sethCj.

Each local modelCk is obtained via fitting a nonlinear
function, namely, by obtaining a set of parametersbk in suit-
ably chosen nonlinear maps

y = fsx,bkd. s10d

For generality, the mapsf are taken to be polynomial func-
tions. The joint probability distributionpsy ,xd is expressed
as a sum over the densities coming from each local model,

psy,xd = o
k=1

K

psy,x,Ckd = o
k=1

K

psyux,CkdpsxuCkdpsCkd.

s11d

The probability of a given local model is denotedpsCkd,
with the usual normalizationok=1

K psCkd=1. Denote byPx,k

and Py,k the covariance matrices for the input and output
data, and byDx andDy the input and output dimensions. A
useful choice for the input distributionpsx uCkd is a Gaussian
density,

psxuCkd =
uPx,k

−1u1/2

s2pdDx/2
expf− sx − mkdT ·Px,k

−1 · sx − mkdg/2

s12d

wheremk are the cluster means. Since the input and output
data are related via Eq.s10d, this gives an output distribution
of the form
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psyux,Ckd =
uPy,k

−1u1/2

s2pdDy/2

3exph− fy − fsx,bkdgT ·Py,k
−1 · fy − fsx,bkdgj/2.

s13d

The posterior probability, which can be computed through
Eqs.s11d, s12d, ands13d as

psCkuy,xd =
psy,xuCkdpsCkd

o
j=1

K

psy,xuC jdpsC jd

, s14d

is maximized with respect to model parametersbk which can
be recursively estimated by an iterative search procedure, the
expectation-maximization algorithmf24g. New cluster prob-
abilities are estimated from the posterior probability in the
usual manner, by

psCkd =
1

N
o
n=1

N

psCkuyn,xnd, s15d

while the cluster means are updated as

mk =

o
n=1

N

xnpsCkuyn,xnd

o
n=1

N

psCkuyn,xnd

, s16d

and hence the input covariance matrix elements are esti-
mated as

Px,ksi, jd = ksxi − mid · sx j − m jdl. s17d

The optimal model parametersbk can be determined by the
stationarity condition,

o
n=1

N
]

]bk
ln psyn,xnd = 0, k = 1,2, . . . ,K. s18d

Thus all the model parameters may be evaluated from

bk = Bk
−1 Ck s19d

where

Bksi, jd = kf isx,bkd · f jsx,bkdl, s20d

Cksi, jd = kf isx,bkd · yjl. s21d

Finally, the corresponding output covariance matrixPy,k as-
sociated with each cluster is evaluated from the estimated
values of the model parameters as

Py,k = kfy − fsx,bkdg · fy − fsx,bkdgTl. s22d

The set of parameters is recursively estimated until they
converge to stationary values, and from the local models, the
global modelM is constructed. Any desired quantity such as
the Lyapunov exponents, correlation functions, or fractal di-
mension can be computed directly from the global model.

IV. APPLICATIONS AND RESULTS

We apply the CWM methodology to compute the
Lyapunov spectra for several model systems both for pur-
poses of validation as well as to demonstrate the suitability
of this technique for examining signals that originate from
driven dynamics.

Consider, for simplicity, a discrete driven one-
dimensional mapping of the general form

fn+1 = F„fn,hsnd…, s23d

where the forcing is effected through the functionhsnd which
has dependence on the time indexn. In a standard manner,
by increasing the phase-space dimension this can be rewrit-
ten as an autonomous skew product of the form

fn+1 = fsfn,und, s24d

un+1 = gsund, s25d

where the latter equation depends on the nature of the forc-
ing. The dynamics of the system is thus characterized by the
mapsf ,g, while the measurements give the observed quan-
tity ssnd=ssfnd.

As an example here we consider the case

un = nv + u0 mod 1, s26d

namely,gsund=un+v mod 1. Whenun appears as the argu-
ment of the forcing function, this can be either periodic or
quasiperiodic in time according asv is a rational or irrational
number. In the latter case, the dynamics can be on SNA’s
f19,25g. As indicated earlier, existing methods of Wolfet al.
f12g, Kantz f20g, and Brownet al. f21g which approximate
the Jacobian in Eq.s3d as a local neighborhood map and
calculate local divergence have been demonstrated to esti-
mate incorrect Lyapunov exponents for driven systemsf13g.

The procedure for dynamics reconstruction from a
measured times series using the present methodology is as
follows.

s1d The CWM algorithm considersxsnd and ysnd;xsn
+1d for n=1, . . . ,1000 as the input and output data sets.
Each local model Eq.s10d is chosen to be a quadratic func-
tion in x.

s2d The input distribution and output distribution are
evaluated via Eqs.s12d and s13d and hence the posterior
probability is obtained from Eq.s14d.

s3d The log-likelihood of the data is maximized and the
converged parameter valuesbk are estimated by Eq.s19d as
described.

s4d Since the functional form of the fitting function is
known, the JacobianDf is readily estimated. A proper choice
of the number of clusters required depends on the eigenval-
ues of the local covariance matricesPx,k and Py,k f15g. We
have found typically thatK=2 suffices for prediction and
considering a larger number of clusters does not significantly
improve results.

s5d Lyapunov exponents are evaluated from Eq.s6d.
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A. The logistic map

Consider the logistic mapfn+1=afns1−fnd, for which
the Lyapunov exponent ata=4 is L=ln 2 sthe subscript is
dropped to simplify notation since there is only one expo-
nentd. Taking the input signalssnd as fn, one obtains the
embedded dataxsnd in a d-dimensional reconstructed phase
space via Eq.s9d for the choice of delay timeT=1. To obtain
robust estimates, the above algorithm is applied successively
to data segments until the estimated Lyapunov exponents
show convergence with iterations. We findLt<Lm=0.6931,
in good agreement with the exact value; further, increasing
the embedding dimension does not change this value.

The power of cluster-weighted modeling is further shown
in its ability to accurately predict local dynamics, and from
this to estimate the finite-time Lyapunov exponent distribu-
tion. It is known that this quantity has a characteristic depen-
dence on the nature of the dynamicsf26g. Shown in Fig. 1 is
the probability density for the finite-time Lyapunov expo-
nentsPsL ,k=10d, computed from time series from the lo-
gistic map for fully developed chaossa=4d, and intermittent
chaos sa=1+Î8−10−6d. In both these cases, the present
technique correctly obtains the density, giving a cusp around
Lt<0.693 in the former case, Fig. 1sad, and an asymmetric
fat-tailed distribution in the latterf18,26g, Fig. 1sbd. The fi-
delity with which the local dynamics can be reconstructed is
a crucial feature that contributes to the success of CWM in
estimating Lyapunov exponents for forced systems.

B. Quasiperiodic forcing

The quasiperiodically forced logistic map and the forced
Hénon map are discrete driven systems where, depending on

parameters, the dynamics can be on chaotic-nonchaotic and
strange-simple attractors. The choice of quasiperiodic forc-
ing is of the form as in Eq.s26d. If f :M 3R→M is the time
evolution of a system inf in anm-dimensional manifoldM,
the Takens delay embedding mapS :M→Rd is given by
Ssfd=sssfd ,s(fsfd) , . . . ,s(fd−1sfd)d and requires thatd
ù2m+1. In our case of forced systems the dynamics is on an
M 3N manifold where the forcinggPN, an n-dimensional
manifold f14g.

We take S :M 3N→Rd as the embedding, namely,
Ssf ,ud=sssf ,ud ,s(fsf ,ud) , . . . ,s(fd−1sf ,ud)d for dù2sm
+nd+1. This is, however, not generic for allf and g. In
addition, periodic forcing of short period needs to be ex-
cluded. This is a technical pathologyf14g which can be over-
come for quasiperiodic forcing at the expense of having to
use higher embedding dimensions.

Table I gives the converged Lyapunov exponents com-
puted from the time-series data, i.e.,Li

t for i =1, . . . ,d the
number of embedding dimensions of the reconstructed phase
space. Increasing the embedding dimension does not signifi-
cantly alter the estimated Lyapunov exponents. Spurious ex-
ponents are also estimated by this method as being approxi-
mately zero: this is a result of the forced dynamical system
having the skew-product structure. We have already shown
that our cluster-weighted modeling based algorithm has the
capability of reproducing the probability distribution of
finite-time exponents. This is true for the SNA dynamics as
well, the corresponding probability distribution being asym-
metric with distinct domination of contracting dynamics
f27g; see Fig. 2. This effect is more prominent for smaller
finite-time lengths when it results in longer tails in the dis-
tribution. The error margins reported in Table I are the stan-
dard deviations of the estimated Lyapunov exponents ob-
tained by repeating the analysis for different initial
conditions, namely,

s =Î 1

m− 1o
k=1

m

sLk − kLld2, s27d

wherem is the number ofsMonte Carlod trials. The distribu-
tion of theLk is approximately normal, with meankLl;Lt.

C. Additive noise

We have also studied the effects of noise in the estimation
of Lyapunov exponents. This is a problem of considerable
practical importance since any experimental signal is usually
corrupted by noise. The usual effect of additive noise is to
increase unpredictability, and therefore give higher estimates
for the Lyapunov exponentssd. For dynamics that is chaotic,
this introduces systematic errors, but when the dynamics is
nonchaoticsas on a SNAd, additive noise can destroy the
nonchaotic attractor. Here we add white noise to the time
series of the forced Hénon map as

fn → fn + Rhn, s28d

whereR is the noise strength and thehn are i.i.d. random
variables in the intervalf−1,1g. The CWM technique is tol-
erant to low noise intensities; shown in Fig. 3 are the esti-

FIG. 1. Characteristic probability distribution of finite-time
Lyapunov exponents forsad fully developed chaossa=4d and sbd
type-I intermittencysa=Î8+1−10−6d in the logistic map. The dis-
tributions are fork=10, and are obtained from 212 samples.
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mated values of the three leading Lyapunov exponents as a
function of the noise strength, log10 R. For higher noise in-
tensity, the spurious exponentsswhich should be zerod are
inaccurately estimated, leading to an incorrect identification
of the dynamics.

V. CONCLUSION

Cluster-weighted modeling is an efficient methodology
for the reconstruction of complex nonlinear dynamics. We
have shown here that this method offers the possibility of
accurately estimating dynamical features such as the

Lyapunov exponents from scalar time series monitored from
a variety of driven nonlinear dynamical systems.

Our method relies on the Takens embedding theorem, and
constructs local nonlinear maps to model the dynamics in the
reconstructed phase space. This makes the computation of
the Jacobian both efficient and accurate. Embedding the
time-series data in higher dimensions introduces spurious ex-
ponents but CWM is successful in restricting them to near

TABLE I. Lyapunov exponents estimated from time seriessLtd for systems without and with forcing, and
on chaotic attractors or SNA’s. The largest Lyapunov exponent, denotedLm, is obtained from the dynamics.
In each case, a total of 20 Monte Carlo trials was used to estimate the error bars.

System Model Parameters Lm Lt

Logistic map fn+1=afns1−fnd a=4.0 schaoticd 0.6931 0.6929±0.0049

Forced fn+1=afns1−fnd+e sins2pund a=0.155,e=3.04 0.0161 0.0169±0.0040

logistic map un+1=un+vsmod 1d schaoticd 0.0000±0.0008

−0.0002±0.0004

a=0.151,e=3.01 −0.0210 0.0001±0.0004

sSNAd 0.0000±0.0004

−0.0212±0.0849

Forced fn+1=1−bfn
2+cn+a sins2pund a=0.2,g=0.1,b=1.0 0.0846 0.0849±0.0062

Hénon map cn+1=gfn schaoticd 0.0000±0.0008

un+1=un+vsmod 1d 0.0000±0.0004

−2.3867±0.0715

a=0.2,g=0.1,b=0.885 −0.0377 0.0000±0.0004

sSNAd 0.0000±0.0008

−0.0376±0.0053

−2.2645±0.0093

FIG. 2. Characteristic probability distribution of finite-time
Lyapunov exponents for the quasiperiodically forced logistic map
showing SNA dynamics. The parameters area=0.151,e=3.01, and
the distribution is obtained from 212 samples.

FIG. 3. The effect of external noiseR on the leading Lyapunov
exponents for the quasiperiodically forced Hénon map showing
SNA dynamics. BeyondR,0.003, accurate estimation of the
Lyapunov exponents becomes numerically difficult.
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zero values. Of particular importance is the fact that finite-
time Lyapunov exponent distributions can also be estimated
with considerable accuracy. Finally the present algorithm
shows sufficient robustness to noisy data which makes it
suitable to be used in most practical situations.

Although strange nonchaotic dynamics have been sug-
gested as underlying stable and aperiodic natural phenomena
f28,29g, it has hitherto proven difficult to conclusively estab-
lish this from time-series analysis alone. The present meth-
ods can prove to be of considerable value in studying such

dynamics, particularly in an experimental setting.
We also believe that the CWM methodology can be ex-

tended to develop control and synchronization strategies for
low-dimensional dynamical systems, and work in that direc-
tion is currently in progress.
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